
APS Applications for Understanding 
and Modeling the Performance of 
Reactor Materials under Tensile 

Loading Conditions

Dr. Xiao Pan, Dr. Jon Almer, Dr. Meimei Li & 
Dr. James F. Stubbins

ATR User Week
1-5 June 2009

Department of Nuclear, Plasma and Radiological Engineering
University of Illinois at Urbana-Champaign



The Problem

• Irradiation-induced embrittlement, or flow localization, is a major 
concern for advanced nuclear systems

• Tensile behavior is complex  with several distinct regions:

– Elastic, Plastic, Necking and Fracture 

• Past experimental approaches cannot examine the controlling 
processes in each region

• Irradiation has a major influence on the transition between elastic 
and plastic response

• However, irradiation seems to have little effect on plastic strain 
hardening, plastic instability (necking) and fracture stress

• The plastic and failure response seem to be controlled by a 
critical stress
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The Problem
• Critical stress is associated with void 

nucleation

• Void nucleation is a complex  process, 
depending on interfacial strength, 
particle size, particle volume fraction, 
stress state, and matrix strength, etc.

• Several stress criteria have been 
developed to characterize void 
nucleation: dislocation model, 
continuum calculation, and fracture 
analysis.

• Models have limitations
– Derived from post-deformation (static) 

microstructural characterization

– Contains no information about the 
dynamic processes during failure
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Motivation, Challenge and Reward

Motivation: 

• Understand the microstructural features which control tensile 
deformation – with and without irradiation exposure

Challenge:

• Measure deformation processes at the microstructural level 
during loading

Reward:

• Ability to model tensile behavior:
– Complete response: elastic, plastic, necking and fracture

– Control microstructure for optimal tensile performance

– Relate tensile response to fracture toughness and other key 
mechanical properties
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Objectives and Approaches

Objectives:
• Understanding the controlling mechanism of the critical stress

– Correlation between critical stress and interfacial strength for void 
nucleation

• Understanding the characteristics of the critical stress
– Effects of particle size, particle distribution and orientation, and particle 

volume fraction.

• Understanding the temperature dependence of the critical stress.

Approaches:
• Tensile tests at 20, 100, 200, 300 and 400C
• In situ tensile tests with x-ray diffraction (XRD) and small angle x-ray 

scattering (SAXS)
• Ultra-small angle x-ray scattering (USAXS) 
• Microstructural analysis by scanning electron microscopy (SEM)
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Materials: 9-12Cr Ferritic Model Alloys
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♦ Particle size increases with 
tempering time

♦ Particle volume fraction 
increases with C%

Heat Treatment: 

• Austenitisized at 980˚C/0.5 h &air cooled

• Tempered at 720˚C for 4, 8, 16 days
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In situ x-ray Measurements

• APS 1-ID beamline, 81 keV (λ= 0.015 nm) x-ray beam 
with a square 100100 µm2.

• In situ tensile test by two steps: continuous and 
interrupted test.
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X-ray Diffraction Analysis

Lattice Strain can 
be expressed by the 
radius change of 
Debye–Scherrer
diffraction rings 
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X-ray Diffraction Analysis
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Experimental Results - Critical Stress

• Critical stress decreases with  increasing temperature

• Critical stress decreases with increasing particle size

• Critical stress increases with increasing carbon 
concentration, i.e. particle volume fraction
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Void Evolution by SEM
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Void Evolution by in situ SAXS and XRD

• Void density is low and uniform before UTS. 

• After passing UTS, void density is location dependent. 

• Void density decreases with increasing temperature.
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Void Evolution by USAXS
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USAXS measurements cover the Q-value in the range from 
0.0003 to 0.04 Å-1 (feature size from 15 to 200 nm.)



Lattice Strain Evolution
• Temperature has different effect on particle and matrix.

• Load partition occurs earlier with increasing temperature.

• Near-zero mismatch between particle and matrix at elastic 
region.

• Load transfer starts at the beginning of yield point.
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Lattice Strain Evolution

• Axial lattice strain increases quickly near necking point 
due to strain localization, and is flat far away from necking 
region.

• Decrease of absolute value of transverse lattice strain at 
necking point is due to hydrostatic tension stress.
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Critical Interfacial Strength

Interfacial strength
(MPa)
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Comparison of critical interfacial strength determined by 
lattice strain measurements and the dislocation model



Critical Interfacial Strength

• Critical stress is linearly 
correlated with critical 
interfacial strength

• Both critical stress and 
interfacial strength have 
strong temperature 
dependence

criticalerfacial  )8.1~5.1(int 
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Dislocation Density Analysis
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• Dislocation density determined 
by x-ray peak profile analysis

• Dislocation density 
continuously increase with 
strain

• There is a scattering behavior 
after passing UTS
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Micro-Structural Model (MSM)

Micro-structural model
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MSM calculations match x-ray measurements for all tested 
cases and provide better prediction than dislocation model. 19



Universal Microstructural Geometry-corrected Model (UMGM)

UMGM Model:
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Conclusions

• UTS is a critical and starting point for void nucleation. Void nucleation 
is controlled by the critical interfacial strength.

• Critical stress is linearly correlated with critical interfacial strength. 
• Critical interfacial strength has strong temperature dependence.
• Particle characters have significant effects on critical interfacial 

strength. 
– Decreases with increasing particle size, 
– Dependent on particle morphology. 
– Independent of particle volume fraction 

• Micro-Structural Model (MSM) can predict critical interfacial strength
using macro tensile testing parameters. MSM model is consistent with 
experimental measurements and provides better prediction than 
dislocation models. 

• Universal Micro-structural Geometry-corrected Model (UMGM) offers 
new method to calculate true strain-true stress curve up to fracture. 
Grounded with experimental data, the UMGM provides empirical 
validation for existing methods. 21



Future Work

• ATR Irradiation Program – in preparation
• In situ void growth and coalescence at APS

• Irradiation-induced flow localization

• Notch effect and strain mapping

• More precise experimental design
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